Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine.
نویسندگان
چکیده
5-methylcytosine (5mC) in DNA plays an important role in gene expression, genomic imprinting, and suppression of transposable elements. 5mC can be converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) proteins. Here, we show that, in addition to 5hmC, the Tet proteins can generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) from 5mC in an enzymatic activity-dependent manner. Furthermore, we reveal the presence of 5fC and 5caC in genomic DNA of mouse embryonic stem cells and mouse organs. The genomic content of 5hmC, 5fC, and 5caC can be increased or reduced through overexpression or depletion of Tet proteins. Thus, we identify two previously unknown cytosine derivatives in genomic DNA as the products of Tet proteins. Our study raises the possibility that DNA demethylation may occur through Tet-catalyzed oxidation followed by decarboxylation.
منابع مشابه
Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.
Ten-eleven translocation 1-3 (Tet1-3) proteins have recently been discovered in mammalian cells to be members of a family of DNA hydroxylases that possess enzymatic activity toward the methyl mark on the 5-position of cytosine (5-methylcytosine [5mC]), a well-characterized epigenetic modification that has essential roles in regulating gene expression and maintaining cellular identity. Tet prote...
متن کاملTET Family of Dioxygenases: Crucial Roles and Underlying Mechanisms.
DNA methylation plays an important role in the epigenetic regulation of mammalian gene expression. TET (ten-eleven translocation) proteins, newly discovered demethylases, have sparked great interest since their discovery. TET proteins catalyze 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in 3 consecutive Fe(II)- and 2-oxoglutarate (2-OG)-dependent oxidati...
متن کاملEffects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation.
We investigated systematically the effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation in synthetic duplex DNA. We found that the replacement of 5-methylcytosine at a CpG site with a 5-hydroxymethylcytosine, 5-formylcytosine, 5-carboxylcytosine or 5-hydroxymethyluracil resulted in altered methylation of cytosine at both the opposite a...
متن کاملThe emerging insights into catalytic or non-catalytic roles of TET proteins in tumors and neural development
The Ten-eleven translocation (TET) proteins have been recently identified as critical regulators in epigenetic modification, especially in the methylation of cytosine in DNA. TET-mediated DNA oxidation plays prominent roles in a wide variety of physiological and pathological processes, especially in tumor and neural development. TET proteins execute stepwise enzymatic conversion of 5-methylcyto...
متن کاملEnzymatic analysis of Tet proteins: key enzymes in the metabolism of DNA methylation.
One of the most exciting recent advances in the epigenetic field is the discovery that 5-methylcytosine (5mC) in DNA can be iteratively oxidized by a family of proteins known as Tet proteins to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These 5mC derivatives can be further processed by thymine-DNA glycosylase (TDG) followed by base excision r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 333 6047 شماره
صفحات -
تاریخ انتشار 2011